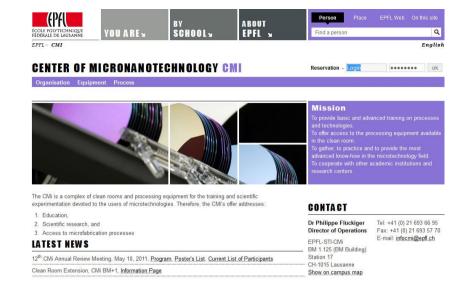


DLL MED3 1119

DLL : Discovery Learning Laboratories

2

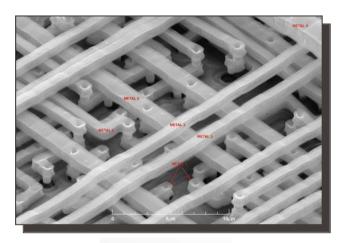
3

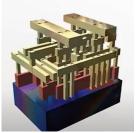


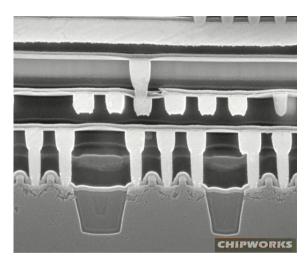
CMi Website

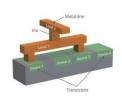
CMi website tour:

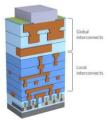
http://cmi.epfl.ch/

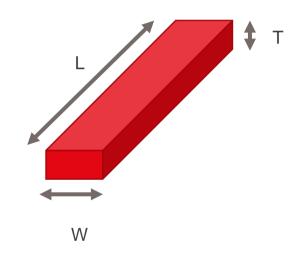




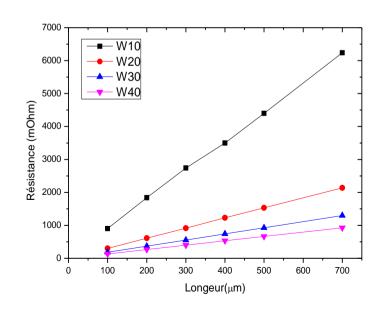



Material ordering...

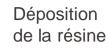

- Composants intégrés = empilement de motifs en films minces: électrodes, couches actives, isolantes ou protectrices
- Réalisation nécessite plusieurs étapes successives de photolithographie

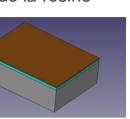


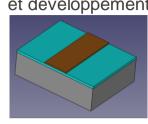
Résistance électrique


Fil métallique de section rectangulaire

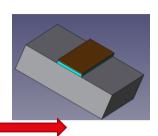
L (longueur) et W (largeur)

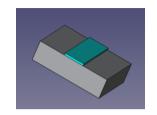

ρ Résistivité du filmT Epaisseur du film

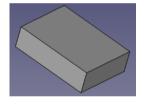

$$R = \rho \frac{L}{W.T}$$



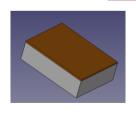
Déposition Du métal

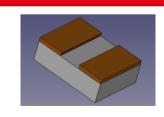


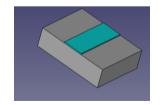

Résine après exposition UV et développement


Après gravure du métal

Après élimination de la résine






Substrat

Procédé: Liftoff

Après déposition du métal

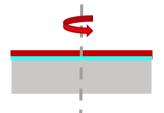
Topic 2: Résine positive Courbe de contraste **Epaisseur de résine en fonction de** la vitesse de rotation.

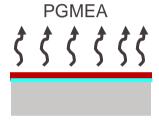
Résine photosensible positive

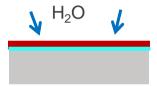
- Une résine est composée de 3 éléments essentiels :
 - Polymère inactif : matrice du film Novolaque (10-40%)

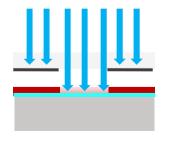
•Elément photo actif (PAC) diazonaphtoquinone (DNQ) (1-5%)

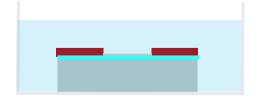
•Solvant: contrôle la viscosité de la résine propylène-glycolmonométhyl-éther-acétate (PGMEA) (50-85%)


Etapes de fabrication: Résine positive


1. Nettoyage de la surface


2. Silanisation: HMDS


3. Etalement de la résine


4. Pré-recuit

5. Relaxation: rehydratation

6. Exposition aux UV

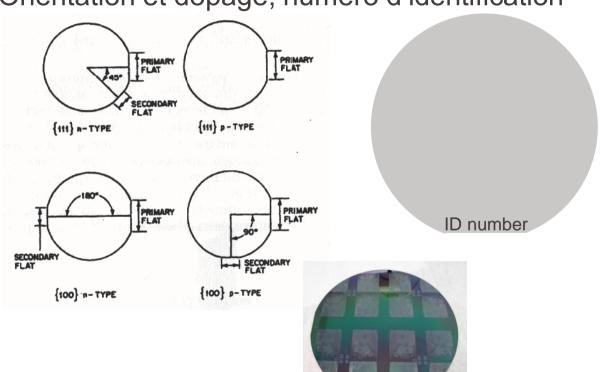
7. Développement

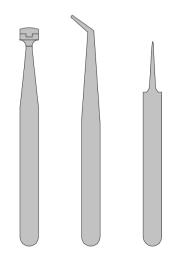
8. Caractérisation

Process flow & Feuille de route

Lab:	Phone:	CM:
Operator Name :	Office:	CMi EPFL Center of
Supervisor Name:	E-mail:	MicroNanoTechnology

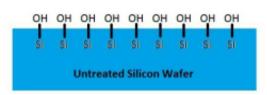
Step-by-step process outline


Step	Process description	Cross-section after process
01	Substrate: Si test Wet Oxidation Machine: Centrotherm Thickness: 0.5 µm	
02	Photolith PR coat Machine: EVG150 PR : AZ1512 – 1.1µm	
03	Photolith expo+ develop Machine: MA + EVG150 Mask: CD = 5um Align wafer flat + short O2 plasma Descum (10s Tepla low - Z2)	5 µm
04	Dry Etch Material : Si02 Machine: SPTS Depth : 0.5 µm	_
05	Resist Strip Material: AZ1512 – 1.1µm Machine: Tepla + Remover	
06	Photolith PR coat Machine: EVG150 PR: AZ1512 on LOR – 1.5+0.5 um	


Step	Description	Equipemen	t	Program /	Paramete	rs	Targ	et		Act	ual	Rem	arks		
1	WAFER PREPARATION														
1.1	Stock out "litho" wafers														
1.2	Stock out "align" wafers														
1.3	Check	Z15/F20 Thi Analyzer	in-Film									First wafe		e on sa	ample Si
2	PHOTOLITHOGRAPHY: "LITHO"														
		Z13/SSE co		100mm chuck ii			in								
	Check machines Z13/SSE hotplate Z13/MJB4		tplate				position 100°C								
						Lamp on									
2.1	HMDS priming														
2.2	AZ1512HS coating														
2.3	AZ1512HS softbake														
2.4	AZ1512HS relaxation time														
2.5	AZ1512HS expose														
2.6	AZ1512HS expose														
2.7	AZ1512HS develop														
2.8	Water cleaning														
2.9	Inspection														
3	MEASUREMENTS: "LITHO"														
3.1	AZ1512HS thickness														
4	MEASUREMENTS: RESOLUTION														
4.1	Resolution of structures						Correctly exposed, underexposed and overexposed regions.								
4.2	Alignment quality					Measurements on Vernier microstructures.									

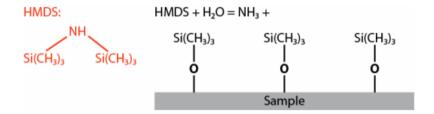
Identification du substrat

Orientation et dopage, numéro d'identification



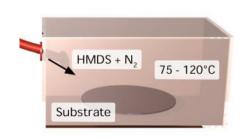
Préparation de surface: nettoyage et promoteur d'adhérence

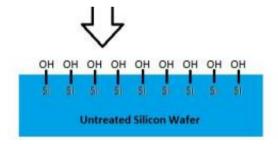
- But : améliorer l'adhésion et l'uniformité de la couche de résine à la surface du substrat.
- Problème: l'oxyde native du silicium rend la surface hydrophile
 - absorbe humidité

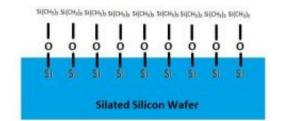


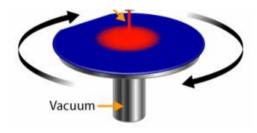
- Solution:
 - Déshydratation: élimination d'humidité à la surface du substrat
 - Recuit thermique à 120 °C pendant quelques min
 - Désorption des liaisons –OH
 - Silanisation: déposition en phase gazeuse du silane hexamethyldisilazane (HMDS) à la surface du substrat

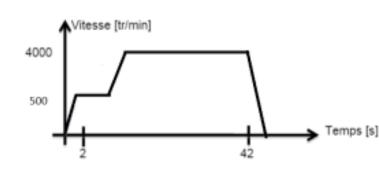
•

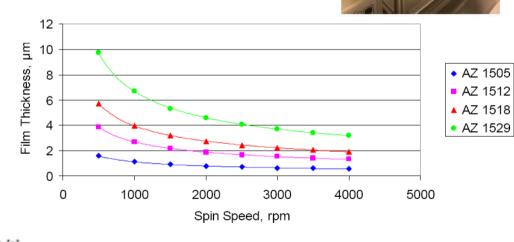

Préparation de surface


Hexamethyldisilazane (HMDS)







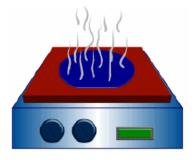

Déposition de la couche de résine

- Etalement à la tournette
- Obtenir une couche de résine uniforme

Résine liquide

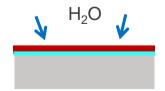
e : épaisseur de la résine (um)

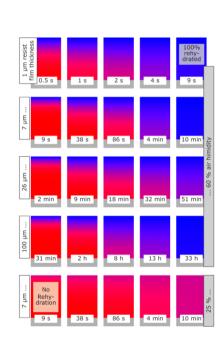
k : constante de la tournette


v : vitesse de rotation (tr/mn)

Pré-recuit

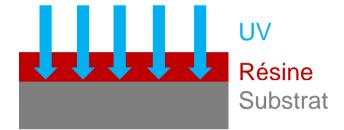
PGMEA

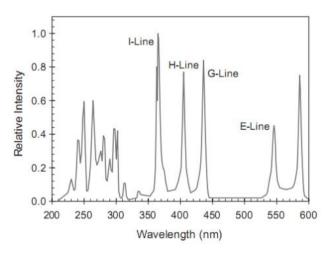

\$ \$ \$ \$ \$ \$

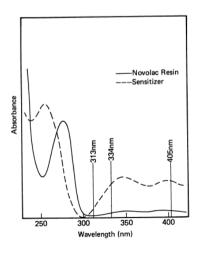

- Elimination des solvants (réduction de l'épaisseur).
- Amélioration de l'adhésion de la résine au substrat
- Réduit les contraintes créées dans la résine pendant la centrifugation
- Température de recuit: élément très important
 - A softbake at 100°C on a hotplate for 1 min per μm resist film thickness. At 110°C, halve the softbake time, while for each 10°C below 100°C the time should be doubled
 - Température élevée:
 - la résine réagit avec l'oxygène dans l'air et conduit à la formation de fissures
 - Décomposition du photo-initiateur
 - Température faible:
 - Élimination du solvant n'est pas suffisante
 - Cause des problèmes lors de l'exposition aux UV

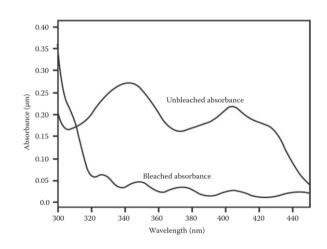
Relaxation/réhydratation

- Refroidissement du substrat (atteindre la température ambiante).
- Minimiser la dilatation thermique induite par la température
- Permettre à la vapeur d'eau de diffuser dans la résine. Sa présence est nécessaire pour le réaction chimique durant l'exposition aux UV.
- H₂O provient de l'humidité en salle blanche (>40%)

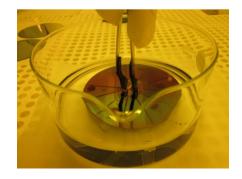


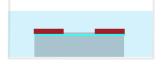



Exposition aux UV

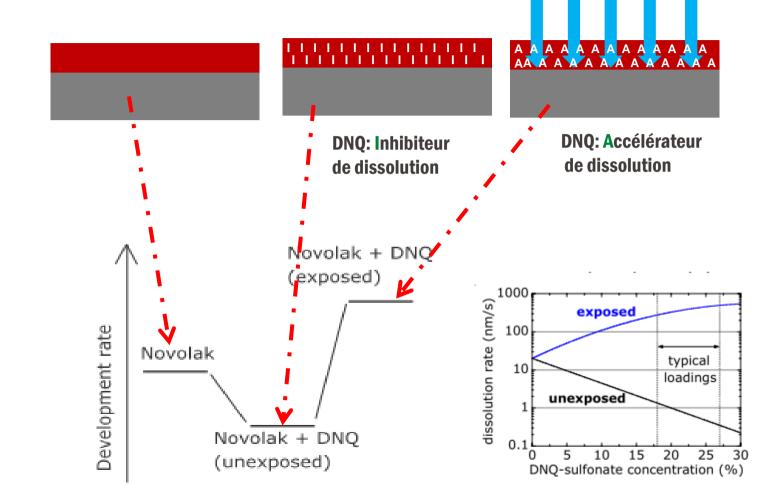

UV light : λ = 365 nm

I_{lamp} # mW/cm²

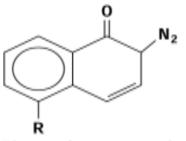



Développement

- Dissolution de la résine exposée aux UV dans une solution de développement
 - MIF (metal ion free) (Souvent TMAH) ne contient pas d'ion Na⁺ et K⁻
 - Utilisé essentiellement pour les composants électroniques et optiques
 - MIC (metal ion containing) (solution basique; NaOH, KOH)
 - Contient les ions Na+ et K- pouvant contaminer les composants électriques.
 - Souvent utiliser dans MEMS et les photomasques
- Concentration de la solution et du temps de développement



7. Développement

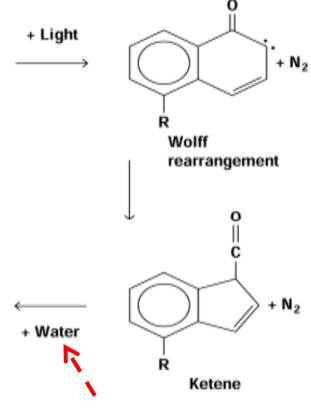


8. Caractérisation

Résine positive: Novolak + DNQ

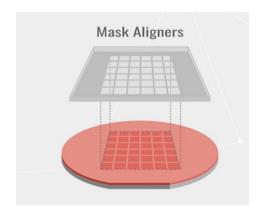


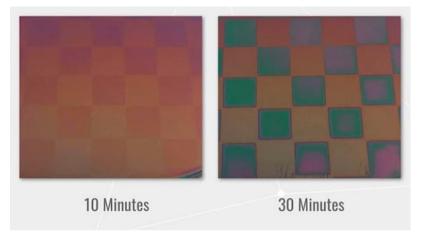
Résine positive: DNQ photoinitiateur

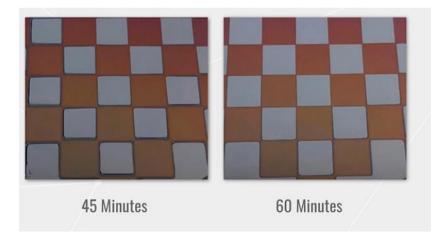


Photoactive compound

- Inhibiteur de dissolution
- 2. hydrophobique


- Accélérateur de dissolution
- 2. hydrophilique


Eau provient de l'humidité > 40%

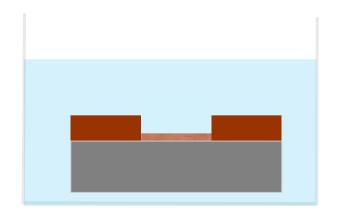


Effet de la lumière blanche

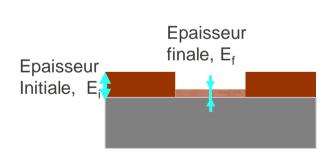
Salle de lithoraphie : éclairage lumière jaune

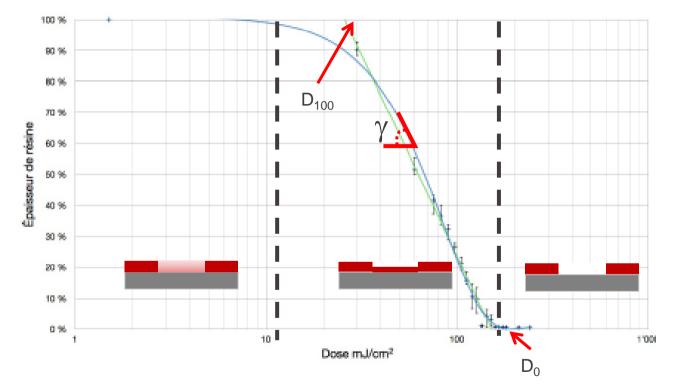
Courbe de contraste

Variation de l'épaisseur normalisée en fonction de la dose d'exposition


Epaisseur normalisée =
$$\frac{E_f}{E_i}$$
 Dose d'exposition = $I_{lampe} \times t_{exp}$

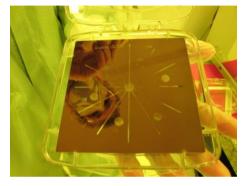
$$I_{lampe}$$
= Intensité de la lampe (mW/cm²)
 t_{exp} = temps d'exposition (sec)

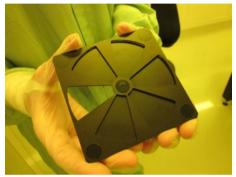



Exposition aux UV, texp

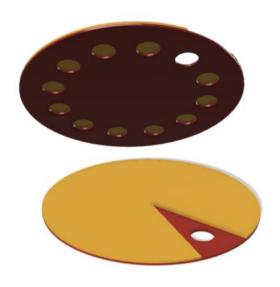
Développement, t_{dev}

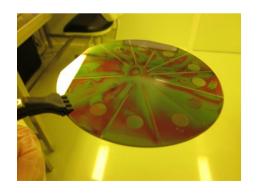
Courbe de contraste: résine positive

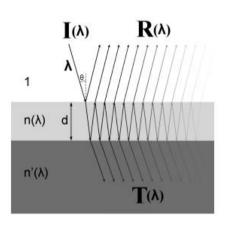


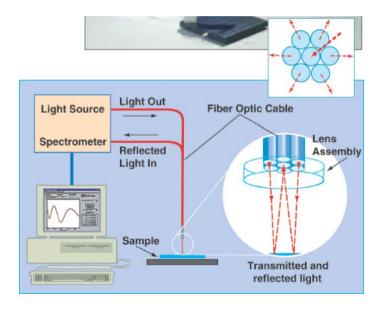

- Sensibilité de la résine: D₀
- Contraste de la résine : γ

$$\gamma = \frac{1}{\log(\frac{D_0}{D_{100}})}$$


Masques pour la courbe de contraste



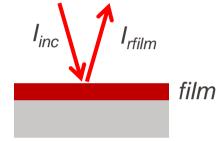




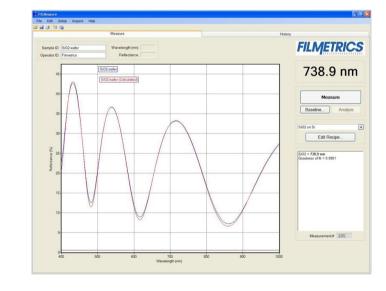
Mesure par réflectance

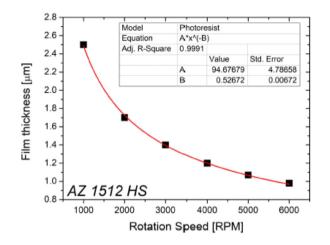
- The light intensity reflected from the sample at a normal incidence is measured over the range of wavelengths
- Computer software uses the property of dispersion of index refraction of the film to determine the film thickness.
- Non-destructive and non-contact
- Simple and relatively low cost

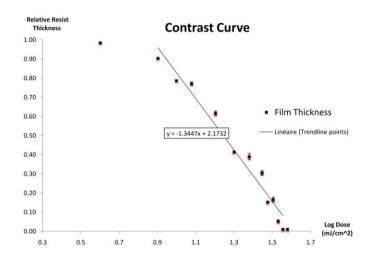
- 1


Principe de mesure

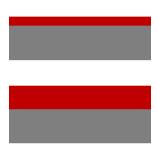
$$R_{film}(\lambda) = \frac{I_{rfilm} - I_{bkg}}{I_{inc} - I_{bkg}} = \frac{I_{rfilm} - I_{bkg}}{I_{rsub} - I_{bkg}} R_{sub}(\lambda)$$

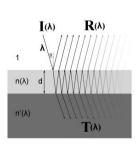

$$R_{sub}(\lambda) = \frac{I_{rsub} - I_{bkg}}{I_{inc} - I_{bkg}}$$

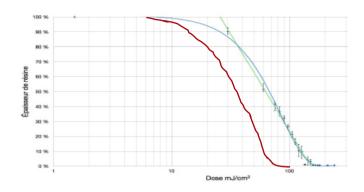

substrat

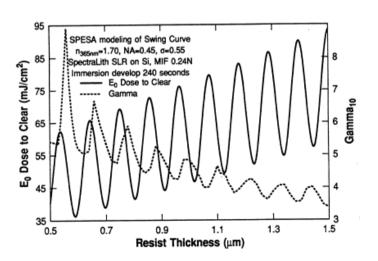


$$R(\lambda) = \frac{r_{01}^2 + r_{12}^2 + 2r_{01}r_{12}\cos\left(\frac{4\pi n_1(\lambda)d}{\lambda}\right)}{1 + r_{01}^2r_{12}^2 + 2r_{01}r_{12}\cos\left(\frac{4\pi n_1(\lambda)d}{\lambda}\right)}$$

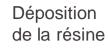


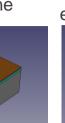


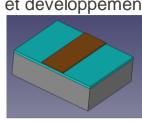




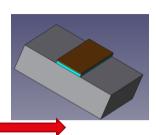
Effet de l'épaisseur de la couche de résine

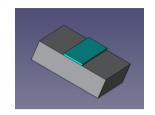


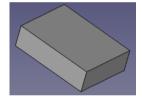




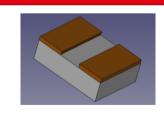
Déposition Du métal

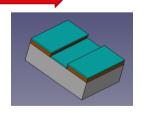


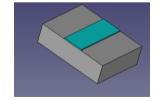

Résine après exposition UV et développement


Après gravure du metal

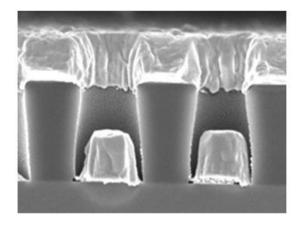
Après élimination de la résine

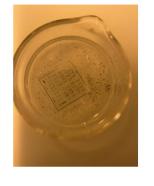




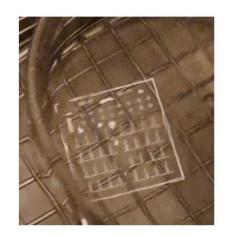

Substrat

Procédé: Liftoff




Après déposition du metal

Topic 3 : Résine négative Liftoff Angle de contact

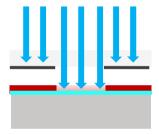

Liftoff

Step	Process description	Cross-section after process
01	Substrate: Glass wafer • Teply O2 plasma treatment,	
02	Photolith PR coat • 1.4 um AZ nLOF 2020 coating in ACS200,	
03	Photolith expo+ develop • 4.7 sec exposure with MJB4 (94 mJ/cm²) • Developing in ACS200,	
04	Metal deposition • 20/200 nm Ti/Al in EVA760, 450 mm WD, dep. rate: 5 A/s	

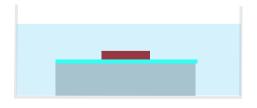


Etapes de fabrication : Résine négative

1. Nettoyage de la surface

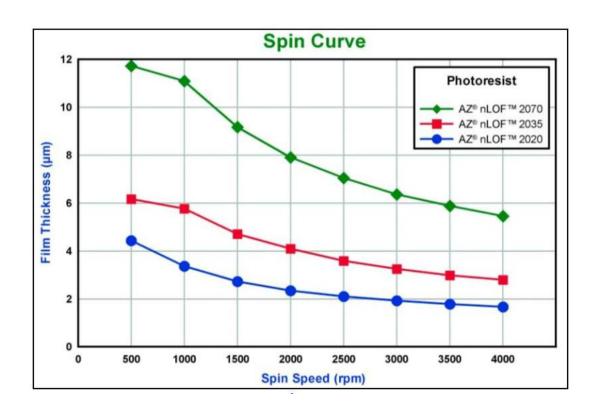

3. Etalement de la résine

4. Pré-recuit

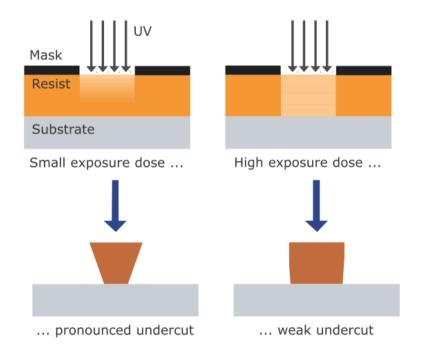

2. Silanisation: HMDS

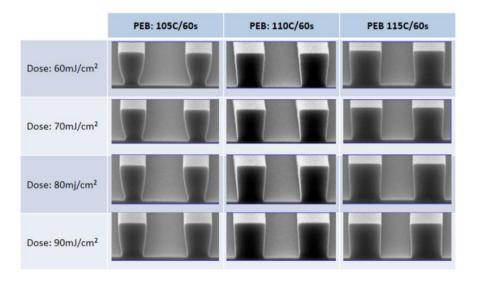
5. Exposition aux UV

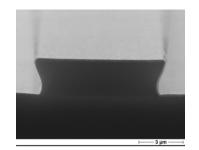
6. Post-recuit (PEB)

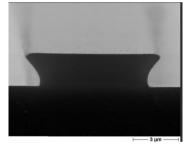

7. Développement

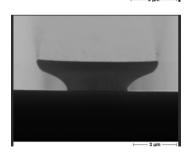
8. Caractérisation

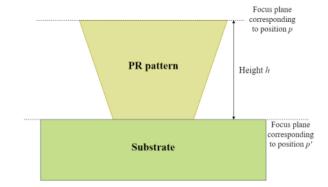


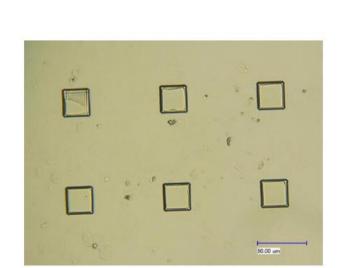

Résine Négative: AZ nL0F 2070

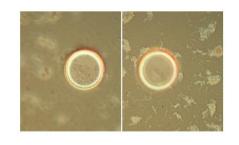


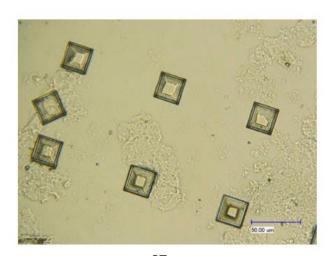


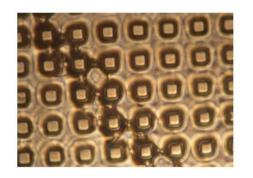

Résine négative

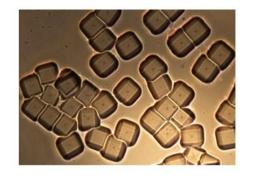


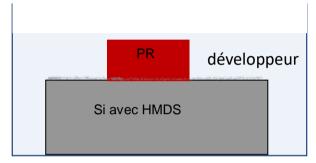


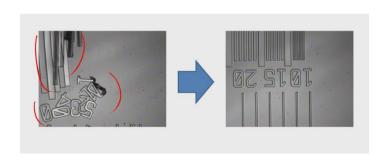


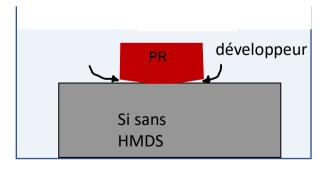


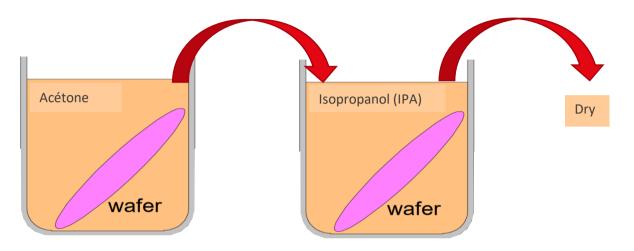


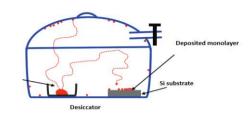



37


Préparation de surface

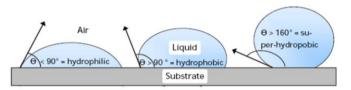

Pour avoir une bonne adhérence de la résine photosensible, l'angle de contact doit être compris entre 45° et 65°.

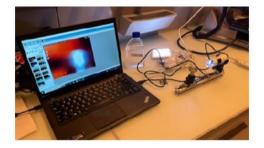




Nettoyage et promoteur d'adhérence

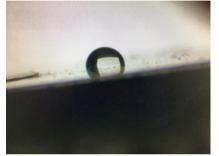
Les paramètres ayant une influence sur le dépôt du HMDS sont :

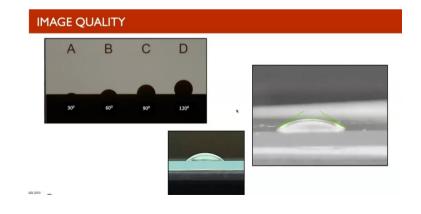

- la température
- la pression dans l'enceinte pendant le dépôt
- la durée du dépôt HMDS

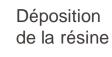


Angle de contact

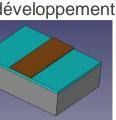
L'angle de contact est l'angle entre le substrat et la tangente de la goutte d'eau posée sur le substrat



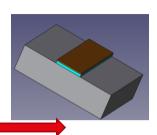


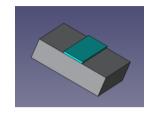


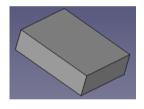
Topic 4: Salle blanche Alignement Gravure chimique



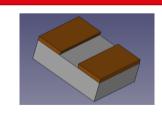
Déposition Du métal

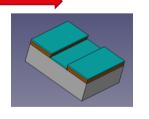



Résine après exposition UV et développement

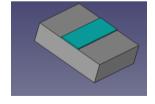

Après gravure du metal

Après élimination de la résine





Substrat





Après déposition du metal

Topic clean room

CMI: Centre of MicroNanoTechnology

Habillement

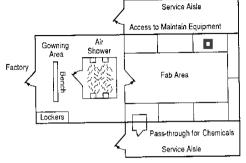
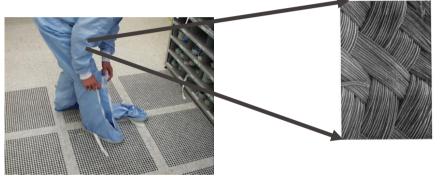


Figure 4.12 Fab area with gowning area, air showers, and service aisles.


- Surchausses
- combinaison
- gants vynil

Entrée

- carte camipro

bottes masque facial

• lunettes de sécurité

Sortie

CMI session

Z5: Mask fabrication

> PR development

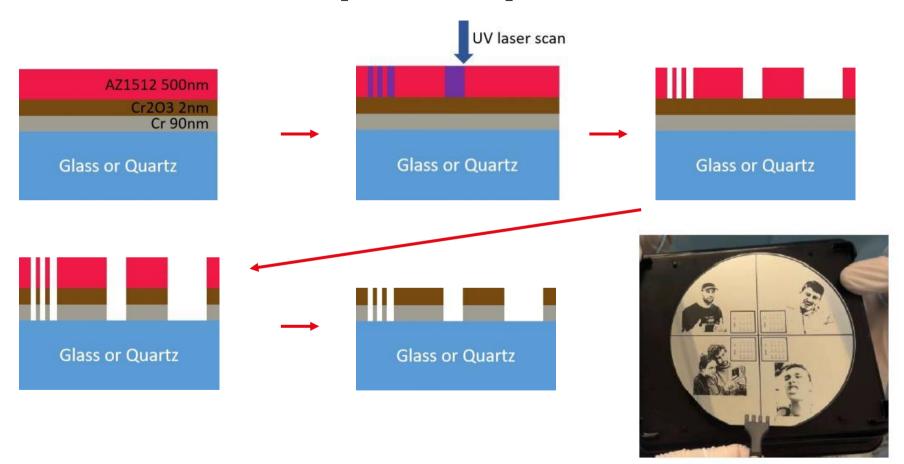
Cr etching

EPFL

> Z6: Hamatech **HMR900**

- > Z6: UV exposure Süss MA6 Gen3
 - Z1: Development
 - **ACS 200**

- > Alignement
- Mask for Al etch

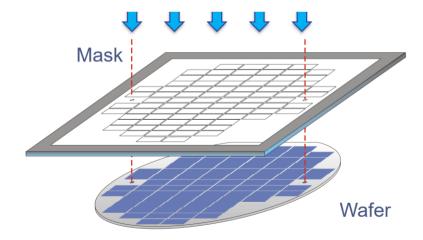

- > Z2: Al etching Plade Metal
- > Z2: Resist stripping Bain remover 1165

- > Al etch
- > Resist stripping

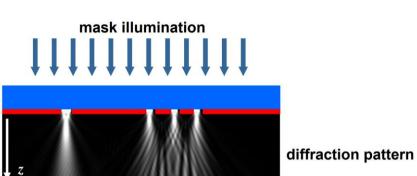
- Alpha step
- > Z15: Dek Tak

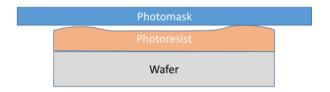
Al thickness measurement

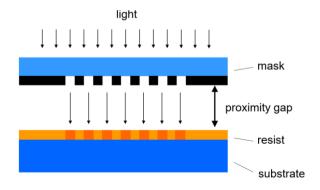
Fabrication de photomasque

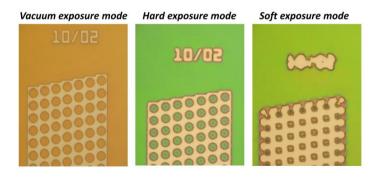


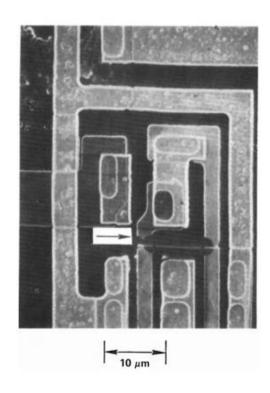
Préparation du masque

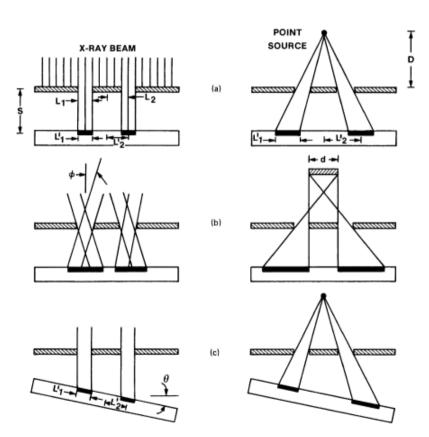



-



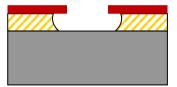

photomask


Techniques d'exposition aux UV





EPFL Structuration


• Masque en résine photosensible

- Résine
- Couche mince
- Substrat

Gravure chimique

- Gravure humide
- Gravure sèche

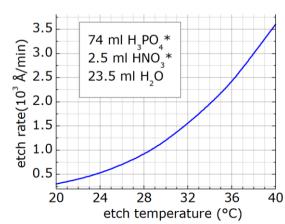
Gravure isotrope

Gravure anisotrope

Gravure chimique d'aluminium

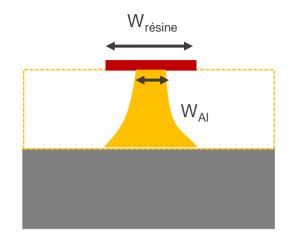
Chemical product: ANP T=35 °C ER= 300 nm/min

 H_3PO_4 : HNO_3 : CH_3COOH : $H_2O = 73$ %: 3.1 %: 3.3 %: 20.6 %

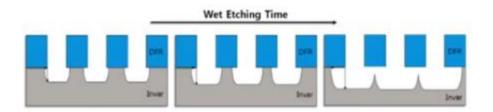

ratio in volume (83:5.5:5.5)

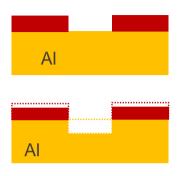
https://cmi.epfl.ch/organisation/materials.php

Typical Aluminium etchants contain mixtures of 1-5 % HNO_3^* (for Al oxidation), 65-75 % $H_3PO_4^*$ (to dissolve the Al_2O_3), 5-10 % CH_3COOH^* (for wetting and buffering) and H_2O dilution to define the etch rate at given temperature.

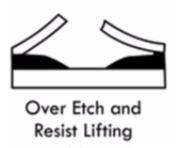

$$6H^+ + 2AI \rightarrow 3H_2 + 2AI^{3+}$$
 Al³⁺ is water-soluble

- · Aluminum etches in water, phosphoric, nitric and acetic acid mixtures.
- Converts AI to AI₂O₃with nitric acid (evolves H₂).
- Dissolve Al₂O₃ in phosphoric acid.
- · Gas evolution leading to bubbles.
- · Local etch rate goes down where bubble is formed, leading to non-uniformity.

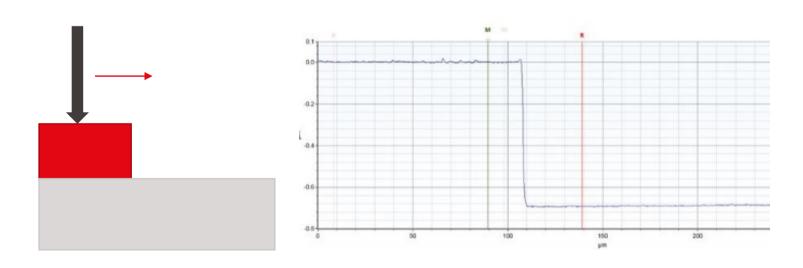




Gravure chimique d'aluminium

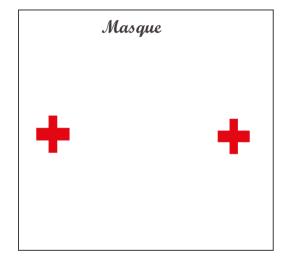


$$V_l = \frac{W_{r\acute{e} \sin e} - W_{Al}}{2 * T_{gravure}}$$

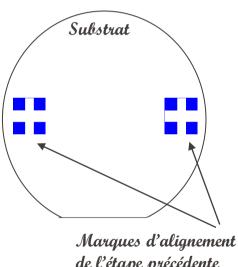

$$Selectivité = \frac{vitesse \text{ de gravure d'Al}}{\text{vitesse de gravure du résine}}$$

Mesure d'épaisseur: profilomètre mécanique

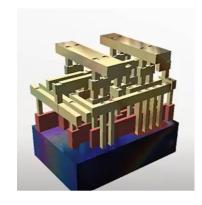
La mesure se fait grâce à une pointe très fine en diamant se déplaçant sur une marche de la couche d'aluminium.

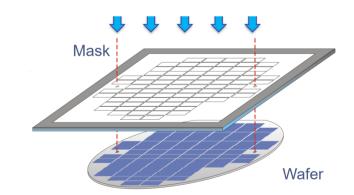


1



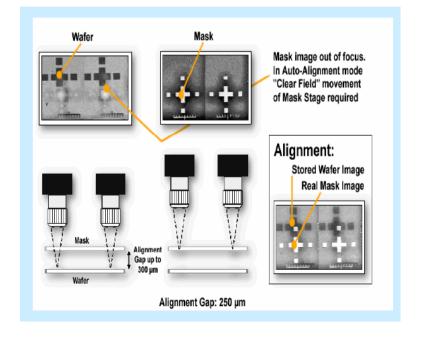
Procédé d'alignement

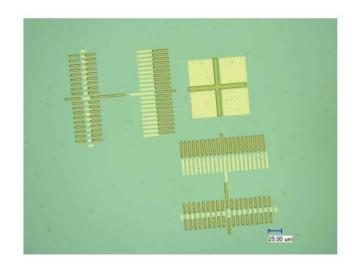

Nécessaire d'aligner le masque et le substrat afin que les motifs soient situés à l'endroit voulu.

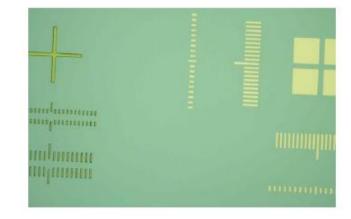


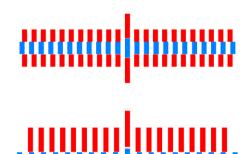
Masque pour le niveau à réaliser

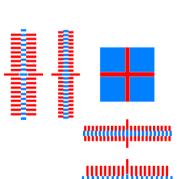
de l'étape précédente

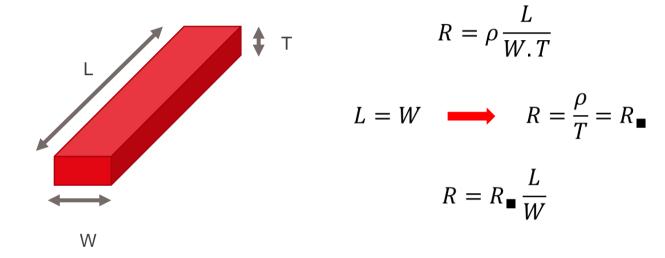



Alignement de masque




Topic 5 : mesure électrique mesure optique



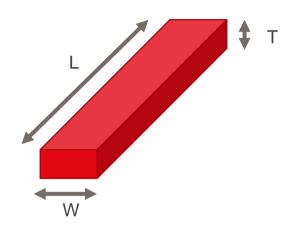

BM3 229/ BM3 231

Résistance électrique

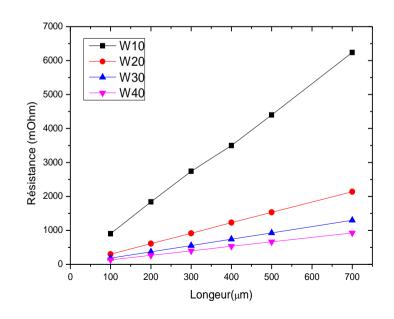
Piste de section rectangulaire

L (longueur) et W (largeur): caractérisent la géométrie du masque

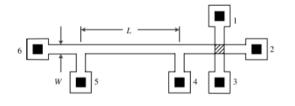
R_■ Résistance par carrée : caractérise la technologie


ρ Résistivité du film

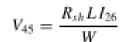
T Epaisseur du film

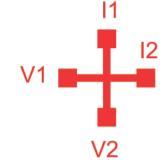

Résistance électrique: calcul

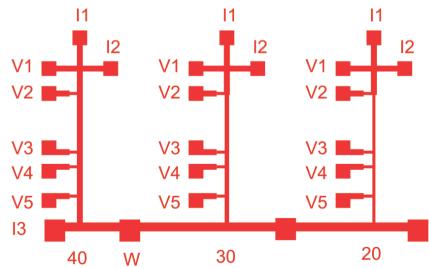
Motif de section rectangulaire



contact	V1-V2	V1-V3	V2-V3	V2-V4	V3-V4	V4-V5	W (unit)
L(µm)	400	750	300	550	200	100	
R(unit)							
R(unit)							
R(unit)							
R(unit)							


$$R = R_{\blacksquare} \frac{L}{W}$$

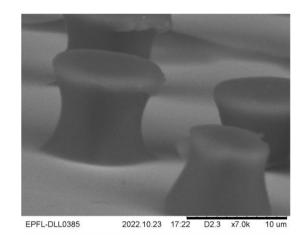


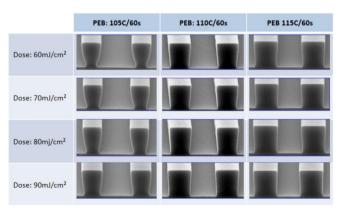

-

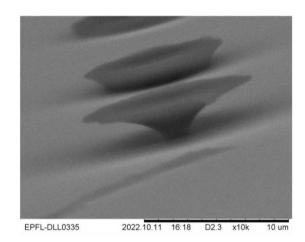
$$R_{\blacksquare} = R_{sh} = \frac{\pi}{\ln(2)} \frac{V_{34}}{I_{12}}$$

Mesure

contact	V1-V2	V1-V3	V2-V3	V2-V4	V3-V4	V4-V5	W (unit)
L(µm)	400	750	300	550	200	100	
R(unit)							
R(unit)							
R(unit)							
R(unit)							






Topic 6: Observation profile Résine négative

MEB observation

Microfabrication practicals

Dashboard > My courses > MICRO-332

Turn editing on

News forum (used by teachers)

choisissez votre groupe

ED Discussion (used by students and teachers)

Search forums

Go

Advanced search ?

Sécurité en salle blanche

Centre de microtechnologie, EPFL

Habillement

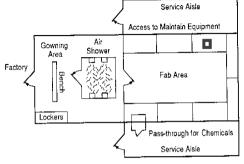
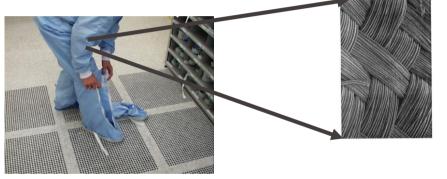
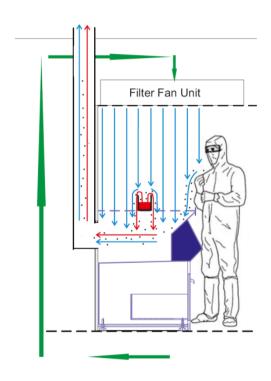


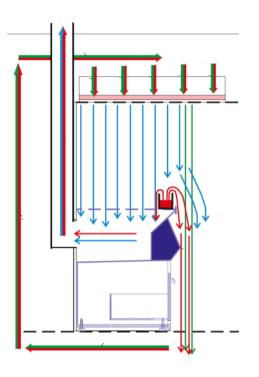
Figure 4.12 Fab area with gowning area, air showers, and service aisles.


- combinaison
- bottes
- masque facial
- gants vynil
- lunettes de sécurité

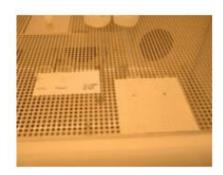
Sortie

carte camipro









Do not touch thee knob with fingers that were in contact with chemical. To press a button, make sure that your glove is clean and dry, and fold you finger like on picture

CMi good working practice (Z13 wet-benches)

Before starting your work, make sure to wear a second pair of <u>nitrile gloves</u>, <u>protective glasses</u> and your <u>face-mask!</u>

CMi good working practice (Z13 wet-benches)

When working: Do not overcrowd (maximum 2 persons), do not place wafer boxes on the bench, do not use chemicals outside of the bench!

Safety rules

- CAMIPRO required for each person entering or leaving the cleanroom
- Never work alone: a buddy is required in the cleanroom at any time
- Only one emergency phone number :

115

- Report any safety problems you encounter
- Wear protective glasses or medical glasses all the time

1

General cleanroom rules

- Lint free cleanroom paper only
- Cleanroom notebooks available through CMi ordering system
- Pens are available in each zone
- Photocopier can be used to transfer notes in and out of the cleanroom
- PC access to public folders in each zone

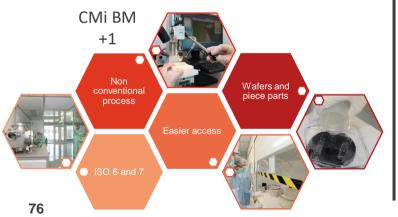
Prohibited:

- normal paper
- pencils and normal pens

General cleanroom rules

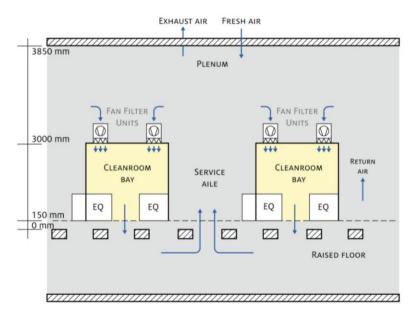
- All wafers should be in boxes with :
 - Owner and date labelled
 - Process flow
- All your material should be stored in one red box
- Lost and found shelf
- Wafers must be handled with vacuum or mechanical tweezers

- Do not seat on tablesDo not scratch your fa
- Do not scratch your face



CMi cleanroom concept

Ebeam lithography Photolithography Etching Thins films Metrology



Grinding
Thermal imprint
Inkjet printer
PDMS line
Photolithography on
chips
Customized chemistry
Metrology

...

Description of the Cleanroom Air filtration and circulation in class 100

ACTUAL VALUES (2/3 of maximum capacity)

- FRESH AIR
 - 60'000 m³/h
 - filter efficiency: 99.97% for
 - particles size: 0.1-0.3 μm
- EXHAUST
 - 36 '000 m³/h
- FFU
 - ISO 5 : 189 units
 - ISO 6 and 7:46 units
 - 0.7 m² active area
 - total: 189'000 m³/h
 - filter efficiency : 99.999% for
 - particles size 0.1-0.3 μm

CMi cleanroom concept

Standard ISO 14644-1

Concentration max allowed of particles (particles/m³ of air) Particles sizes equal or superior to that given below

	Classe ISO	0,1 μm	0,2 μm	0,3 μm	0,5 μm	1 μm	5 μm	Classe US FS209
	ISO 1	10	2	0	0	0	0	
	ISO 2	100	24	10	4	0	0	
	ISO 3	1 000	237	102	35	8	0	1
	ISO 4	10 000	2 370	1 020	352	83	0	10
CMi BM -1 ⇒	ISO 5	100 000	23 700	10 200	3 520	832	29	100
604: DN4 .4	ISO 6	1 000 000	237 000	102 000	35 200	8 320	293	1 000
CMi BM +1 -	ISO 7	∞	∞	∞	352 000	83 200	2 930	10 000
	ISO 8	∞	∞	∞	3 520 000	832 000	29 300	100 000
	ISO 9	∞	8	∞	35 200 000	8 320 000	293 000	

1